Prognostic impact of progesterone receptor expression in HER2-negative Luminal B breast cancer

Prognostic impact of progesterone receptor expression in HER2-negative Luminal B breast cancer

Tímea Selmeci, Anna-Mária Tőkés, Ágnes Róna, Béla Ákos Molnár, István Kenessey, Borbála Székely, Lilla Madaras, A. Marcell Szász, Janina Kulka

Abstract


Aim: The new classification of breast cancer is based on microarray studies. Within the estrogen receptor (ER) positive breast carcinoma subtype further subgroups could be identified. In the present study, we analyzed the Her2 negative, highly proliferative subgroup (Luminal B1-like, LUMB1) with emphasis on their clinicopathological characteristics and progesteron receptor (PR) expression.

Patients and methods: Our retrospective study concerned the period between 2000 and 2010. 158 patients were selected with ER positive, Her2 negative, Ki67>15% breast cancer. The pathological and clinical data were collected and analyzed. Age, tumor grade and stage, ER, PR, Her2 and Ki67 expression were recorded. The clinicopathological variables were correlated to PR expression.

Results: The mean age of the patients was 57.5 (28-75) years. The ratio of patients younger than 40, was 8.86%. Shorter metastasis-free survival was observed in this young age group (P=0.044). The majority of our cases belonged to the pT1-pT2 stages (41.28% and 44.95%, respectively) whereas pT3 and T4 stage was detected in 5.50% and 8.25% of the cases. Almost half of the cases had no axillary lymph node metastasis (pN0: 48.91%), 1-3 lymph node metastases were detected in 38.04% (pN1), 4-10 metastatic lymph nodes were identified in 9.78% (pN2) and pN3 stage was found in 3.26% of the cases. Most commonly the tumors were either grade 2 or 3 (44.16% and 45%, respectively). The median value of Ki67 labeling index was 30%. Disease progression was detected in 36.19% of the patients. According to PR expression, a tendency to better prognosis (i.e. longer disease free- and overall survival) was detected in cases showing >10% PR positivity. However, no difference was found regarding tumor size, axillary stage, grade and age when comparing lower and higher PR expressing tumors.

Conclusions: LUMB1 breast carcinomas are typically grade 2 and grade 3, the Ki67 labeling index is often 30% or higher. Distant metastases occur in more than one third of the cases. Within this subgroup, those cases with low PR expression represent a poor prognostic cohort. These findings require further investigations in larger number of LUMB1 breast cancer cases.


Keywords


progesterone receptor, Luminal B1 breast cancer, prognosis

References


Bianchini G, Pusztai L, Karn T, Iwamoto T, Rody A, Kelly C, et al. Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers. Breast Cancer Res 2013; 15(5): R86.

Zhang MH, Man HT, Zhao XD, Dong N, Ma SL. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Biomed Rep 2014; 2(1): 41-52.

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS 2001 ; 98(19): 10869-10874.

Untch M, Gerber B, Harbeck N, Jackisch C, Marschner N, Mobus V, et al. 13th st. Gallen international breast cancer conference 2013: primary therapy of early breast cancer evidence, controversies, consensus - opinion of a german team of experts (zurich 2013). Breast Care (Basel) 2013; 8(3): 221-229.

Yanagawa M, Ikemot K, Kawauchi S, Furuya T, Yamamoto S, Oka M, et al. Luminal A and luminal B (HER2 negative) subtypes of breast cancer consist of a mixture of tumors with different genotype. BMC Research Notes 2012; 5: 376.

Guiu S, Michiels S, Andre F, Cortes J, Denkert C, Di Leo A, et al. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Annals of Oncol 2012;23(12):2997-3006.

Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Annals of Oncol 2013; 24(9): 2206-2223.

Prat A, Parker JS, Fan C, Perou CM. PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012; 135(1): 301-306.

Creighton CJ. The molecular profile of luminal B breast cancer. Biologics: Targets & therapy. 2012; 6: 289-297.

Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, et al. Progesterone receptor loss identifies Luminal B breast cancer subgroups at higher risk of relapse. Annals of Oncol 2013; 24(3): 661-668.

Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403-

Histopathology. 2002; 41(3A): 151-152.

Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of Surg Oncol 2010; 17(6): 1471-1474.

Hanna WM, Ruschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Modern Pathol 2014; 27(1): 4-18.

Park S, Koo JS, Kim MS, Park HS, Lee JS, Lee JS, et al. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 2012; 21(1): 50-57.

Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. JNCI 2009; 101(10): 736-750.

de Azambuja E, Cardoso F, de Castro G, Jr., Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 2007; 96(10): 1504-1513.

Cserni G, Voros A, Liepniece-Karele I, Bianchi S, Vezzosi V, Grabau D, et al. Distribution pattern of the Ki67 labelling index in breast cancer and its implications for choosing cut-off values. Breast 2014; 23(3): 259-263.

Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol 2010; 28(20): 3271-3277.

Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 2005; 23(30): 7721-7735.

Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol 2013; 31(2): 203-209.

Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 2003; 21(10): 1973-1979.

Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, et al. The molecular diversity of Luminal A breast tumors. Breast Cancer Res Treat 2013; 141(3): 409-420.

Silwal-Pandit L, Moen Vollan HK, Chin SF, Rueda OM, McKinney SE, Osako T, et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res. 2014; 20(13): 3569-3580.


Refbacks

  • There are currently no refbacks.



Copyright 2015-2017, Hellenic Society of Pathology
ISSN: 2459-3443